



## Identifying Lagrangian Coherent Structures with Fuzzy Consensus Clustering

Liam Blake Supervised by A/ Prof. Sanjeeva Balasuriya & Dr. John Maclean The University of Adelaide

> Vacation Research Scholarships are funded jointly by the Department of Education and Training and the Australian Mathematical Sciences Institute.



## The Double Gyre

### ANIMATION OF PARTICLES MOVING





## Mathematical Formulation





## Mathematical Formulation





### Mathematical Formulation





## Lagrangian Coherent Structures (LCSs)

• Lagrangian - patterns in particle trajectories.



## Lagrangian Coherent Structures (LCSs)

- Lagrangian patterns in particle trajectories.
- Wide range of diagnostic fields and techniques for extracting LCSs.



## Lagrangian Coherent Structures (LCSs)

- Lagrangian patterns in particle trajectories.
- Wide range of diagnostic fields and techniques for extracting LCSs.



Some look to partition Ω into coherent regions.



SCHOLARSHIPS 2020-21

 $\boldsymbol{X}(t; \boldsymbol{x}_0)$ 

t∩

t

## Finite-Time Lyapunov Exponent (FTLE)

• Measure of maximal stretching of fluid.

$$\sigma\coloneqq\frac{I_1}{I_0}$$

• One of the most common methods, established by Shadden et al. (2005).







## Lagrangian-Averaged Vorticity Deviation (LAVD)

• Vorticity measures local rotational rate.



## Lagrangian-Averaged Vorticity Deviation (LAVD)

- Vorticity measures local rotational rate.
- LAVD is the vorticity relative to spatial mean, averaged along trajectory, proposed by Haller et al. (2016),











## Questions

# Can we combine these perspectives into one way of looking at the flow?



## Questions

Can we combine these perspectives into one way of looking at the flow?

How does this look on real data?





## The Real Data

### ANIMATION OF PARTICLES MOVING



















## How Can We Combine Perspectives: Clustering

• Grouping similar points together into clusters.



## How Can We Combine Perspectives: Clustering

- Grouping similar points together into clusters.
- Key idea: **any** partitioning of the flow is a clustering.



## How Can We Combine Perspectives: Clustering

- Grouping similar points together into clusters.
- Key idea: **any** partitioning of the flow is a clustering.
- Fuzzy consensus clustering combines different clusterings of the same data, proposed by Wu et al. (2017).





#### Consensus of FTLE Ridges & LAVD vortices Cluster 2







## Temperature Field

• But coherency can extend beyond just the flow itself...



## Temperature Field

- But coherency can extend beyond just the flow itself...
- Co-evolving variables such as temperature can reflect LCSs in flow or suggest their own coherency, from Balasuriya et al. (2018).







### SST Cluster Membership







Consensus of all three fields



Cluster 4









-55 -50 -45





## Conclusions

- Combining FTLE & LAVD is not quite right.
- Parameters are tricky.
- Addition of temperature was promising.



## References

- Balasuriya, S., Ouellette, N. T., and Rypina, I. I. (2018). Generalized Lagrangian coherent structures. *Physica D: Nonlinear Phenomena*, 372:31 – 51.
- Haller, G., Hadjighasem, A., Farazmand, M., and Huhn, F. (2016). Defining coherent vortices objectively from the vorticity. *Journal of Fluid Mechanics*, 795:136–173.
- Shadden, S. C., Lekien, F., and Marsden, J. E. (2005). Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. *Physica D: Nonlinear Phenomena*, 212(3):271 – 304.
- Wu, J., Wu, Z., Cao, J., Liu, H., Chen, G., and Zhang, Y. (2017). Fuzzy consensus clustering with applications on big data. *IEEE Transactions on Fuzzy Systems*, 25(6):1430–1445.

