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But we don’t know u exactly...



Introduce some “noise” ξt
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Our noise process ξi should satisfy:

1. ξs and ξt are independent for all s ̸= t.

2. ξt is stationary.

3. ξt is t-continuous with probability 1.



Our noise process ξi should satisfy:

1. ξs and ξt are independent for all s ̸= t.

2. ξt is stationary.

3. ξt is t-continuous with probability 1.



Our noise process ξi should satisfy:

1. ξs and ξt are independent for all s ̸= t.

2. ξt is stationary.

3. ξt is t-continuous with probability 1.



Our noise process ξi should satisfy:

1. ξs and ξt are independent for all s ̸= t.

2. ξt is stationary.

3. ξt is t-continuous with probability 1.

But no such stochastic process ξt exists!



Let’s discretise our ODE
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Let’s discretise our ODE
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)
where Wt is some new stochastic process, such that

ξtk =
Wtk+1

−Wtk

δt
.



Set Wt −Ws ∼ N (0, t − s) for s < t.

Wt is a Wiener process!
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Take δt → 0,

xt = x0 +

∫ t

0
u (xτ , τ) dτ + “

∫ t

0
σ (xτ , τ) dWτ”
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∫ t

0
σ (xτ , τ) dWτ =? lim
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This limit does not exist in the pointwise sense.
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However, we can show that this makes sense as a limit in
probability.

The Itô integral,∫ t

0
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