with Dr. John Maclean and A/Prof. Sanjeeva Balasuriya
We are interested in a state variable \(w_t \in \mathbb{R}^n\)
Our best available model is
\[ \frac{\mathrm{d}w_t}{\mathrm{d}t} = u\left(w_t, t\right), \quad w_0 = x, \] for \(t \in [0,T]\).
Solutions are summarised by the flow map \(F_0^t(x) \equiv w_t\).
An example: Rossby wave with oscillatory perturbation in 2D (Samelson and Wiggins 2006).
But there is unavoidable uncertainty…
Observation error in \(u\)
Discretisation and interpolation error
Other unexplainable phenomena
How can we model the uncertainty in \(F_0^t\)?
\[ \frac{dy_t}{dt} = u\left(y_t, t\right) + \text{``noise''} \]
Multiplicative noise is needed in practice (e.g. Sura et al. 2005)
\[ \frac{dy_t}{dt} = u\left(y_t, t\right) + \varepsilon\sigma\left(y_t, t\right) \cdot \text{``noise''} \]
where \(0 < \varepsilon \ll 1\).
Use the Wiener process \(W_t\); \[ W_s - W_t \sim \mathcal{N}\left(0, (s - t)I_n\right). \]
Formalise as an Itô stochastic differential equation (SDE) \[ \mathrm{d}y_t = u\left(y_t, t\right)\mathrm{d}t + \varepsilon\sigma\left(y_t, t\right)\mathrm{d}W_t, \quad y_0 = x. \]
This is the true model.
Some key properties (e.g. Kallianpur and Sundar (2014)):
Unique solutions exist.
The solution \(y_t\) is now a stochastic process.
\[ \mathrm{d}y_t = u\left(y_t, t\right)\mathrm{d}t + \varepsilon\sigma\left(y_t, t\right)\mathrm{d}W_t, \quad y_0 = x. \]
Solving SDEs is hard.
We can only solve analytically in a few very specific cases.
We can solve numerically to obtain samples (e.g. Kloeden and Platen 1992), but this is computationally expensive.
Any theoretical insight into the behaviour of \(y_t\) is valuable.
\[ \set{y_\tau}_{\tau \in [0,t]} \]
\[ y_t \]
\[ y_t \sim \,??? \]
Extending the approach of Balasuriya (2020)
\[ z_t^{(\varepsilon)}(x) \coloneqq \frac{y_t - F_0^t(x)}{\varepsilon} \]
What happens as \(\varepsilon \to 0\)?
Define \(z_t(x)\) as the solution to the linearised SDE. \[ \mathrm{d}z_t(x) = \nabla u\left(F_0^t(x), t\right)z_t(x) \mathrm{d}t + \sigma\left(F_0^t(x), t\right)\mathrm{d}W_t. \]
We can solve this explicitly
\[ z_t(x) \sim \mathcal{N}\left(0, \Sigma(x,t)\right). \]
We have rigorously shown that \[ z_t^{(\varepsilon)}(x) \xrightarrow{\text{mean}} z_t(x), \quad\text{as } \varepsilon\downarrow 0 \]
so for small \(\varepsilon\), \[ z_t^{(\varepsilon)}(x) \,\dot\sim\, z_t(x). \]
or equivalently \[ y_t^{(\varepsilon)}(x) \,\dot\sim\, F_0^t(x) + \varepsilon z_t(x). \]
\[ y_t \,\dot\sim\, \mathcal{N}\left(F_0^t(x), \varepsilon^2\Sigma(x,t)\right) \\ \]
\[ \Sigma\left(x,t\right) = \int_0^t{L\left(x, t, \tau\right)L\left(x, t, \tau\right)^{T}\mathrm{d}\tau} \] \[ L(x, t, \tau) = {\color{white}\underbrace{\color{black}\left[\nabla F_0^t(x)\right]^{-1} \nabla F_0^\tau(x)}_{\text{model dynamics}}}{\color{white}\underbrace{\color{black}\sigma\left(F_0^\tau(x), \tau\right)}_{\text{multiplicative noise}}} \]
\[ y_t \,\dot\sim\, \mathcal{N}\left(F_0^t(x), \varepsilon^2\Sigma(x,t)\right) \\ \] \[ \Sigma\left(x,t\right) = \int_0^t{L\left(x, t, \tau\right)L\left(x, t, \tau\right)^{T}\mathrm{d}\tau} \] \[ L(x, t, \tau) = {\color{blue}\underbrace{\color{blue}\left[\nabla F_0^t(x)\right]^{-1} \nabla F_0^\tau(x)}_{\text{model dynamics}}}{\color{white}\underbrace{\color{black}\sigma\left(F_0^\tau(x), \tau\right)}_{\text{multiplicative noise}}} \]
\[ y_t \,\dot\sim\, \mathcal{N}\left(F_0^t(x), \varepsilon^2\Sigma(x,t)\right) \\ \] \[ \Sigma\left(x,t\right) = \int_0^t{L\left(x, t, \tau\right)L\left(x, t, \tau\right)^{T}\mathrm{d}\tau} \] \[ L(x, t, \tau) = {\color{white}\underbrace{\color{black}\left[\nabla F_0^t(x)\right]^{-1} \nabla F_0^\tau(x)}_{\text{model dynamics}}}{\color{blue}\underbrace{\color{blue}\sigma\left(F_0^\tau(x), \tau\right)}_{\text{multiplicative noise}}} \]
For any \(0 < \varepsilon \ll 1\), \(x \in \mathbb{R}^n\), \(t \in [0,T]\) and \(r \geq 1\), there is a constant \(D_r(t)\) such that \[ \mathbb{E}\left[\left|\!\left|z_t^{(\varepsilon)}(x) - z_t(x)\right|\!\right|^r\right] \leq D_r(t)\varepsilon^r, \] so \[ \lim_{\varepsilon \to 0} \mathbb{E}\left[\left|\!\left|z_t^{(\varepsilon)}(x) - z_t(x)\right|\!\right|^r\right] = 0. \]
Just a few future extensions/applications:
Uncertain initial conditions
Imperfect knowlege of \(F_0^t(\cdot)\)
Constructing efficient stochastic parameterisation schemes (Leutbecher et al. 2017)
Measuring linearisation error of extended Kalman Filter
Extracting Lagrangian coherent structures
Bayesian inference of diffusivity \(\sigma\)
\[ S^2(x,t) = \left|\!\left|\Sigma(x,t)\right|\!\right| \]