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This can be thought of as a generalisation of a Riemann-Stieltjes
integral.
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» The solution y; is a stochastic process taking values in R".
» In general, an SDE cannot be solved analytically...

P ...but we can solve it numerically to obtain sample paths.
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The probability density function p(x, t) of y; at time t satisfies the
Fokker-Planck equation
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This presents an alternative to solving the SDE directly.
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In general, this is a PDE that we cannot solve. Instead, one has to:

» Solve numerically via standard PDE techniques (e.g. method
of lines, Crank-Nicholson, DFT, etc.)

» Generate many realisations of the SDE solution to create an
empirical estimate.

What the Fokker-Planck equation can do:
» Provide better insight into rare events and distribution tails.
» Provide an easier way to incorporate boundary conditions.

» Provide insight into the long-term behaviour of a system —
we can find a steady state solution.

» Provide a way to map uncertain initial conditions forward with
SDE dynamics — this is useful in data assimilation.
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Consider
dy; =dW:, yo=0 (1)

for which the Fokker-Planck equation is

dp(x,t)
ot

— %Vzp(x, t), p(x,0)"“="0(x)

This is exactly the heat equation. The solution is y; ~ N(0, t) and
so

t=0.1 t=1.0 t=5.0 t=10.0
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Now, consider
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The Fokker-Planck equation is

9p(x, t)
ot

=-V: (Xp(X, t)) + v2p(X, t)? p(X, 0) t=" 5(X - 1)

The solution is a diffusing Gaussian with a drifting mean
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In classical applied mathematics, the advection-diffusion equation
models the diffusion and convection of particles. Suppose:

» cis a scalar field of interest (e.g. temperature, concentration
of a pollutant, density of an organism),
> c diffuses with constant coefficient D, and
» ¢ is moving with a velocity field v.
The advection-diffusion PDE is
8(:53);,1?) =V - (DVc(x,t) — v(x,t)c(x,t))

This is exactly the Fokker-Planck equation with

p=c, u=v, L=DI

This means that every advection-diffusion problem can be
equivalently written as a stochastic differential equation:

dx; = v(x¢, t)dt + D dW.
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Consider quantifying transport of material in the ocean.
Material is driven by a velocity field built from observed data

This data is only available at certain gridpoints, so it is missing
features of the true flow, e.g. subgrid-scale eddies.

One common approach is to model these as stochastic
perturbations.
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In our notation
» The state variable is x = (x¢, yt, f4¢, Vt), so n =4 and m = 2.
» The velocity is

U(Xtayta t)
V(Xtalytv t)
— Mt
7:—[L

u(x,t) =

TVt

» The diffusion is the 4 x 2 matrix
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