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An n-dimensional Itô stochastic differential equation (SDE) is
typically notated as

dyt = u(yt , t) dt + L(yt , t) dWt , y0 ∼ ρ(y0, 0)

where u : Rn × [0,∞) → Rn is the drift, L : Rn × [0,∞) → Rn×m

is the diffusion, and Wt is m-dimensional Brownian noise.
Equivalently

yt = y0 +
∫ t

0
u(yτ , τ) dτ +

∫ τ

0
L(yτ , τ) dWτ ,

where∫ τ

0
L(yτ , τ) dWt = plim

δt→0

∑
[τi ,τi+1]∈P[0,t]

L
(
Xτi , τi

) (
W τi+1 − Wτi

)
.

This can be thought of as a generalisation of a Riemann-Stieltjes
integral.
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dyt = u(yt , t) dt + L(yt , t) dWt .

▶ The solution yt is a stochastic process taking values in Rn.

▶ In general, an SDE cannot be solved analytically...

▶ ...but we can solve it numerically to obtain sample paths.
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e.g. dXt = Xt dt + dWt
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e.g. dXt = tanh(Xt) dt + dWt
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e.g. dXt = tanh(Xt) dt + dWt
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dyt = u(yt , t) dt + L(yt , t) dWt

The probability density function ρ(x , t) of yt at time t satisfies the
Fokker-Planck equation

∂ρ(x , t)
∂t

= −∇·
(
ρ(x , t)u(x , t)

)
+
1

2
∇·∇·

(
ρ(x , t)L(x , t)L(x , t)

⊺
)

with the additional constraints∫
Rn

ρ(x , t) dx = 1, lim
∥x∥→∞

ρ(x , t) = 0.

This presents an alternative to solving the SDE directly.
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In general, this is a PDE that we cannot solve. Instead, one has to:

▶ Solve numerically via standard PDE techniques (e.g. method
of lines, Crank-Nicholson, DFT, etc.)

▶ Generate many realisations of the SDE solution to create an
empirical estimate.

What the Fokker-Planck equation can do:

▶ Provide better insight into rare events and distribution tails.

▶ Provide an easier way to incorporate boundary conditions.

▶ Provide insight into the long-term behaviour of a system —
we can find a steady state solution.

▶ Provide a way to map uncertain initial conditions forward with
SDE dynamics — this is useful in data assimilation.
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Consider
dyt = dWt , y0 = 0 (1)

for which the Fokker-Planck equation is

∂ρ(x , t)

∂t
=

1

2
∇2ρ(x , t), ρ(x , 0) “=” δ(x)

This is exactly the heat equation. The solution is yt ∼ N (0, t) and
so

ρ(x , t) =
1

t
√
2π

exp

[
−x2

2t

]
t = 0.1 t = 1.0 t = 5.0 t = 10.0
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Now, consider
dyt = yt dt + dWt , y0 = 0.

The Fokker-Planck equation is

∂ρ(x , t)

∂t
= −∇ ·

(
xρ(x , t)

)
+∇2ρ(x , t), ρ(x , 0) “=” δ(x − 1)

The solution is a diffusing Gaussian with a drifting mean

ρ(x , t) =
1

t
√
2π

exp

−(x − et
)2

2t


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In classical applied mathematics, the advection-diffusion equation
models the diffusion and convection of particles.

Suppose:

▶ c is a scalar field of interest (e.g. temperature, concentration
of a pollutant, density of an organism),

▶ c diffuses with constant coefficient D, and

▶ c is moving with a velocity field v .
The advection-diffusion PDE is

∂c(x , t)
∂t

= ∇ ·
(
D∇c(x , t)− v(x , t)c(x , t)

)
This is exactly the Fokker-Planck equation with

ρ ≡ c, u ≡ v , L ≡ DI

This means that every advection-diffusion problem can be
equivalently written as a stochastic differential equation:

dxt = v(xt , t) dt + D dWt .
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Consider quantifying transport of material in the ocean.

Material is driven by a velocity field built from observed data

u

[x
y

] =

(
u(x , y , t)
v(x , y , t)

)

This data is only available at certain gridpoints, so it is missing
features of the true flow, e.g. subgrid-scale eddies.
One common approach is to model these as stochastic
perturbations.
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A simple example would be:

d

(
xt
yt

)
=

(u(xt , yt , t)
v(xt , yt , t)

)
+

(
µt

νt

) dt

d

(
µt

νt

)
= − 1

TL

(
µt

νt

)
dt + κ(xt , yt) d

(
W

(1)
t

W
(2)
t

)
In our notation
▶ The state variable is x = (xt , yt , µt , νt), so n = 4 and m = 2.
▶ The velocity is

u(x , t) =


u(xt , yt , t)
v(xt , yt , t)
− 1

TL
µt

− 1
TL

νt


▶ The diffusion is the 4× 2 matrix

L(x , t) =

(
O2×2

κ(xt , yt)

)
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